


Recall

@ Objective: Study function f: {0,1}" — R
o Interpret function {0,1}" — R as vectors in RV, where N = 2"

@ Fourier Basis: A basis for the space RN with appropriate
properties

o Character Functions: For S € {0,1}", we define

XS(X) — (_1)51X1+--+5nxn

)

where x = x1x0...x,and S = 515, ... 5,.

@ We define the inner-product of two functions as

(Fe) = > f(e()

x€{0,1}"

@ With respect to this inner-product the Fourier basis
{X0, X1, -5 XNn—1} is orthonormal
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Recall [

@ Now, every function f can be written as

f= > Ff(S)xs

Se{0,1}"

@ The mapping f — f is the Fourier transformation

@ There exists an N x N matrix F such that f - F = )? for all f

@ This result proves that the Fourier transformation is linear,
that is, (f/4_—\g) —f+g and (c/f\) =cf

o We saw that F - F = % Inxn. This result implies that F is

full rank and f = g if and only if f = g. So, for any function
f, we have
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Recall

@ We saw two identities
© Plancherel's Theorem: (f, g) = Zse{o,l}" f(S)@(S) and
Q Parseval’s Identity: (f,f) = 3 gc(01yn (S)2.
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Objective

@ The objective of this lecture is to associate “properties of a
function f" to “properties of the function "

@ In the sequel we shall consider a few such properties
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Min-Entropy/Collision Probability

@ Let X be a random variable over the sample space {0,1}"

@ We shall use X to represent the corresponding function
{0,1}" — R defined as follows

X(x) =P[X = x]

@ Collision Probability. The probability that when we draw two
independent samples according to the distribution X, the two
samples turn out to be identical. Note that this probability is

col(X) == Y croay X(¥)? = N(X,X)
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Min-Entropy/Collision Probability

@ We can translate “collision probability” as a property of f into
an alternate property of f as follows

olX)=N > X(5)?

Se{0,1}"

This lemma is a direct consequence of the Parseval's identity
@ Note that if we say that “X has low collision probability” then
it is equivalent to saying that "} sc (g 1yn X(S)? is small’
@ So, we can use "} s 130 X(S)2 is small’ as a proxy for the
guarantee that “X has low collision probability”

@ Min Entropy. We say that the min-entropy of X is > k, if
PX=x]<27% =%, forall x € {0,1}"
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Min-Entropy/Collision Probability

@ We can similarly get a property of a high min-entropy
distribution X

If the min-entropy of X is > k, then we have

>, X5y < NK

Se{0,1}"

The proof follows from the ovservation that if the min-entropy
of X'is > k, then we have

col(X ZX ZX ;1<

x€{0,1}" XE{O 1}"
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Min-Entropy/Collision Probability

@ Intuitively, if a distribution X has “high min-entropy” then it
has “low collision probability,” which, in turn, implies that

Y sefo1y X(S)? is small”
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Vector Spaces over Finite Fields

We need to understand vector spaces over finite fields to
understand the next result

In this document, we shall restrict our attention to finite fields
of size p, where p is a prime. In general, finite fields can have
size g, where ¢ is a prime-power
A finite field is defined by three objects (Zp, +, x)
o Theset Z,={0,1,...,p—1}
e The addition operator +. This operator is integer addition
mod p.
e The multiplication operator x. This operator is integer
multiplication mod p.
For example, consider the finite field (Zs, +, x). We have
3+4=2and2x4=3

Every element x € Z, has an additive inverse, represented by
—x such that x + (—x) = 0. For example, —3 =2
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Vector Spaces over Finite Fields I

o Every element x € Z; := Z, \ {0} has a multiplicative inverse,
represented by 1/x, such that x x (1/x) = 1. For example,
1/3=2.

® We can interpret Zj as a vector space over the finite field
(Zp,+, x)

@ We shall consider vector subspace V' of Z that is spanned by
the rows of the matrix G of the following form.

G = [/kxk

ka(nfk)}

@ We consider the corresponding subspace V+ of Zp that is
spanned by the rows of the matrix H of the form

H= [—PT

/(nfk)x(nfk)}
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Vector Spaces over Finite Fields [l

o We define the dot-product of two vectors u, v € Zj as
uivi +- -+ Upvp, where u = (ug,...,up) and v = (vq,...,vy)

@ Note that the dot-product of any row of G with any row of H
is 0. This result follows from the fact that G - HT = Oy p—k.
This observation implies that the dot-product of any vector in
V with any vector in V+ is 0

o Note that V has dimension k and V- has dimension (n — k)

@ The vector space V' is referred to as the dual vector space of
%

o Note that the size of the vector space V is p¥ and the size of
the vector space V= is p"k
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Vector Spaces over Finite Fields

@ Let us consider an example. We shall work over the finite field
(Za,4+, x). Consider the following matrix

1
G=|0
0

o = O
= O O
(o R

0
1
1
The corresponding matrix H is defined as follows

1
0

1010
H= 1101

Note that the dot-product of any row of G with any row of H
is 0. Consequently, the dot-product of any vector in the span
of the rows-of-G with any vector in the span of the rows-of-H
is always 0
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Vector Spaces over Finite Fields

@ Actually, any vector space V' C Zj has an associated
v+ C Zp, such that the dot-product of their vectors is 0.
(Think how to prove this result)
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Fourier Transform of Vector Spaces

@ Let V be a vector sub-space of {0,1}" of dimension k. Let V*
be the dual vector sub-space of {0,1}" of dimension (n — k).

o Let f = |%|1{V}. That is, the function f is the following
probability distribution

1 .
Fx) = { K !fXGV
0, ifxgV

@ Then, we have the following result.

25) = {ﬁ, ifSe vt

0, ifS¢ V™t
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Fourier Transform of Vector Spaces

e Proof Outline. Suppose S € V.

F(S) = (f,xs) = z F(x

XG{O 1}"
1
= 3 FGxs()
xeV
1 X
=k 2 >
xeV
_ 1 Z 1
 NK
xeV
1 1
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Fourier Transform of Vector Spaces [l

Now, note that
1 1 1 1
f.fy=— f(x)? = = =
< ) > N Z (X) N Z K2 NK
xe{0,1}" xeV

Next note that

SRS = Y A8+ D A(S)

se{0,1}" Sevi SgvL
1 ~
= (N/K)5 + 3 F(S)
Sgvi

_ 1 26y
=kt 2 f9
SgvL
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Fourier Transform of Vector Spaces \Y,

By Parseval’s identity, we have (f,f) =) sciq1yn A(S)z. So,

we get that
» f(S)=0
Sgvi

That is, for every S € V+, we have A(S) =0
@ We can write the entire result tersely as follows

Liviy _ 1y
W)= wten
@ As a corollary of this result, we can conclude that

- 1
%0 = plio1yny

Recall that g is the delta function that is 1 only at x =0; 0
elsewhere. Furthermore, the function 1o 1y} is the constant
function that evaluates to 1 at every x
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Fourier Transform of Vector Spaces

@ Recursively use this result and the fact that (V1): = V to

—

verify that <f> = %f

Fourier Analysis



